Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 135(3): 238-249, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36646568

RESUMO

Extracellular electron transfer materials (EETMs) in the environment, such as humic substances and biochar, are formed from the humification/heating of natural organic materials. However, the distribution of extracellular electron transfer (EET) functionality in fresh natural organic materials has not yet been explored. In the present study, we reveal the wide distribution of EET functionality in proteinaceous materials for the first time using an anaerobic pentachlorophenol dechlorinating consortium, whose activity depends on EETM. Out of 11 natural organic materials and 13 reference compounds, seven proteinaceous organic materials (albumin, beef, milk, pork, soybean, yolk, and bovine serum albumin) functioned as EETMs. Carbohydrates and lipids did not function as EETMs. Comparative spectroscopic analyses suggested that a ß-sheet secondary structure was essential for proteins to function as EETMs, regardless of water solubility. A high content of reduced sulfur was potentially involved in EET functionality. Although proteinaceous materials have thus far been considered simply as nutrients, the wide distribution of EET functionality in these materials provides new insights into their impact on biogeochemical cycles. In addition, structural information on EET functionality can provide a scientific basis for the development of eco-friendly EETMs.


Assuntos
Elétrons , Pentaclorofenol , Transporte de Elétrons , Substâncias Húmicas/análise , Pentaclorofenol/metabolismo , Análise Espectral
2.
Artigo em Inglês | MEDLINE | ID: mdl-36429897

RESUMO

This study aimed to elucidate the origin of extracellular electron mediating (EEM) functionality and redox-active center(s) in humic substances, where they are ubiquitously distributed. Here, we show the emergence of EEM functionality during the humification of rice straw in artificial soil (kaolin and sand) with a matric potential of -100 cm at 20 °C for one year. We used the dechlorination activity of an EEM material-dependent pentachlorophenol-dechlorinating anaerobic microbial consortium as an index of the EEM functionality. Although rice straw and its mixture with artificial soil did not initially have EEM functionality, it emerged after one month of humification and increased until six months after which the functionality was maintained for one year. Chemical and electrochemical characterizations demonstrated that the emergence and increase in EEM functionality were correlated with the degradation of rice straw, formation of quinone structures, a decrease in aromatic structures, an increase in nitrogenous and aliphatic structures, and specific electric capacitance during humification. The newly formed quinone structure was suggested as a potential redox-active center for the EEM functionality. These findings provide novel insights into the dynamic changes in EEM functionality during the humification of organic materials.


Assuntos
Oryza , Solo , Solo/química , Elétrons , Substâncias Húmicas/análise , Quinonas
3.
Biotechnol Bioeng ; 119(12): 3487-3496, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36109850

RESUMO

Humin, an insoluble fraction of humic substances at any pH, has been reported to be an extracellular electron mediator (EEM) that functions in carbon dioxide (CO2 )-fixing acetogenesis. Here, we show that humin promotes the microbial electrosynthesis (MES) of acetate from CO2 using Moorella thermoacetica. Yeast extract, essential for the reaction of M. thermoacetica, resulted in the heterotrophic production of organic acids including acetate, hydrogen, and methane. Excluding the effect of yeast extract, MES with 13 g/L of suspended humin poised at -510 mV (vs. Ag/AgCl) achieved a CO2 -fixing acetate production of 24.2 mg-acetate/L/day (1.9 mg-acetate/day/g-humin); this is 10-folds higher than the humin-free MES, with 90.3% of the coulombic efficiency. Although M. thermoacetica is an electroactive bacterium, it obtains electrons for acetogenesis mostly via humin. The suspended humin-assisted MES poised at -810 mV (vs. Ag/AgCl) increased the acetate production rate to 39.3 mg-acetate/L/day using electrons mainly from electrolyzed hydrogen and humin. Immobilization increased the humin's EEM efficiency, as indicated by the acetate production rate of 20.8 mg-acetate/L/day (6.9 mg-acetate/day/g-humin) with a 98.7% coulombic efficiency in MES with 3 g/L of immobilized humin poised at -510 mV (vs. Ag/AgCl). These results suggest that humin-assisted MES has high potential for microbial CO2 fixation.


Assuntos
Dióxido de Carbono , Substâncias Húmicas , Dióxido de Carbono/química , Acetatos , Hidrogênio , Eletrodos
4.
Front Microbiol ; 13: 853411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992702

RESUMO

Although biological nitrogen fixation (BNF) proceeds under mild conditions compared to the energy-intensive Haber-Bosch process, the slow kinetics of BNF necessitate the promotion of BNF activity in its practical application. The BNF promotion using purified nitrogenases and using genetically modified microorganisms has been studied, but these enzymes are unstable and expensive; moreover, designing genetically modified microorganisms is also a difficult task. Alternatively, the BNF promotion in non-modified (wild-type) microorganisms (enriched consortia) with humin has been shown, which is a humic substance insoluble at any pH and functions as an extracellular electron mediator. However, the taxonomic distribution of the diazotrophs promoted by humin, the levels of BNF promotion, and the underlying mechanism in BNF promotion with humin remain unknown. In this study, we show that taxonomically diverse heterotrophic diazotrophs, harboring nifH clusters I, II, and III, promoted their BNF by accepting extracellular electrons from humin, based on the characterization of the individual responses of isolated diazotrophs to humin. The reduced humin increased the acetylene reduction activity of the diazotrophs by 194-916% compared to the level achieved by the organic carbon source, causing adenosine triphosphate (ATP) synthesis in the diazotroph cells without increase in the CO2 production and direct electron donation to the MoFe protein of the nitrogenase in the cells without relying on the biological electron transfer system. These would result in BNF promotion in the wild-type diazotroph cells beyond their biochemical capacity. This significant promotion of BNF with humin would serve as a potential basis for sustainable technology for greener nitrogen fixation.

5.
J Biosci Bioeng ; 134(2): 144-152, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35644797

RESUMO

Dark fermentative biological hydrogen (Bio-H2) production is expected to be a clean and sustainable H2 production technology, and the technologies have been studied to increase in the product yield as index. This study achieved high product yields of Bio-H2 using nitrogen-fixing consortia under nitrogen-deficient conditions with glucose or mannitol as substrate and humin as the extracellular electron mediator: 4.12 mol-H2/mol-glucose and 3.12 mol-H2/mol-mannitol. The high Bio-H2 production was observed under the conditions where both nitrogenase and hydrogenase were active in the presence of humin. Nitrogenase activity was confirmed by acetylene reduction activity and hydrogenase activity by Bio-H2 production under nitrogenase-inhibiting conditions with NH4NO3. [Fe-Fe] hydrogenase detected by a specific PCR and acetate, butyrate, formate, lactate, and pyruvate produced as by-products suggested the involvement of both pyruvate-ferredoxin-oxidoreductase and pyruvate formate lyase pathways in Bio-H2 production. Humin promoted the Bio-H2 production beyond the capacity of the consortium, which had reached saturation with the optimum concentrations of glucose and mannitol. Carbon balance suggested the concurrent H2 consumption by hydrogenotrophic methanogenesis and acetogenesis. Bio-H2 production of the washed and starved consortium with reduced humin under conditions with or without NH4NO3 suggests that humin promoted hydrogenase and nitrogenase activity by donating extracellular electrons. Clostridium and Ruminococcus in the consortia were considered major hydrogen producers. Thus, this study demonstrated the outstanding potential of nitrogen-fixing consortia under nitrogen-deficient conditions with humin as an extracellular electron mediator for dark fermentative Bio-H2 production with high yields.


Assuntos
Hidrogenase , Anaerobiose , Formiatos , Glucose , Substâncias Húmicas , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Manitol , Consórcios Microbianos , Nitrogênio/metabolismo , Nitrogenase/metabolismo , Piruvatos
6.
Artigo em Inglês | MEDLINE | ID: mdl-35270239

RESUMO

Acetogenesis and methanogenesis have attracted attention as CO2-fixing reactions. Humin, a humic substance insoluble at any pH, has been found to assist CO2-fixing acetogenesis as the sole electron donor. Here, using two CO2-fixing consortia with acetogenic and methanogenic activities, the effect of various parameters on these activities was examined. One consortium utilized humin and hydrogen (H2) as electron donors for acetogenesis, either separately or simultaneously, but with a preference for the electron use from humin. The acetogenic activity was accelerated 14 times by FeS at 0.2 g/L as the optimal concentration, while being inhibited by MgSO4 at concentration above 0.02 g/L and by NaCl at concentrations higher than 6 g/L. Another consortium did not utilize humin but H2 as electron donor, suggesting that humin was not a universal electron donor for acetogenesis. For methanogenesis, both consortia did not utilize extracellular electrons from humin unless H2 was present. The methanogenesis was promoted by FeS at 0.2 g/L or higher concentrations, especially without humin, and with NaCl at 2 g/L or higher concentrations regardless of the presence of humin, while no significant effect was observed with MgSO4. Comparative sequence analysis of partial 16S rRNA genes suggested that minor groups were the humin-utilizing acetogens in the consortium dominated by Clostridia, while Methanobacterium was the methanogen utilizing humin with H2.


Assuntos
Dióxido de Carbono , Substâncias Húmicas , RNA Ribossômico 16S , Cloreto de Sódio
7.
Sci Rep ; 11(1): 6567, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753787

RESUMO

Nitrogen fertiliser is manufactured using the industrial Haber-Bosch process, although it is extremely energy-consuming. One sustainable alternative technology is the electrochemical promotion of biological nitrogen fixation (BNF). This study reports the promotion of BNF activity of anaerobic microbial consortia by humin, a solid-phase humic substance, at any pH, functioning as an extracellular electron mediator, to levels of 5.7-11.8 times under nitrogen-deficient conditions. This was evidenced by increased acetylene reduction activity and total nitrogen content of the consortia. Various humins from different origins promoted anaerobic BNF activity, although the degree of promotion differed. The promotion effected by humin differed from the effects of chemical reducing agents and the effects of supplemental micronutrients and vitamins. The promotion of anaerobic BNF activity by only reduced humin without any other electron donor suggested that humin did not serve as organic carbon source but as extracellular electron mediator, for electron donation to the nitrogen-fixing microorganisms. The next generation sequencing (NGS) of partial 16S rRNA genes showed the predominance of Clostridiales (Firmicutes) in the consortia. These findings suggest the effectiveness of humin as a solid-phase extracellular electron mediator for the promotion of anaerobic BNF activity, potentially to serve for the basis for a sustainable technology.

8.
Chemosphere ; 269: 128697, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33139048

RESUMO

The discovery of the function of humin (HM), an insoluble fraction of humic substances (HSs), as an extracellular electron mediator (EEM) in 2012 has provided insight into the role of HM in nature and its potential for in situ bioremediation of pollutants. The EEM function is thought to enable the energy network of various microorganisms using HM. Recently, a number of studies on the application of HM as EEM in anaerobic microbial cultures have been conducted. Even so, there is a need for developing a holistic view of HM EEM function. In this paper, we summarize all the available information on the properties of HM EEM function, its applications, possible redox-active structures, and the interaction between HM and microbial cells. We also suggest scopes for future HM research.


Assuntos
Elétrons , Substâncias Húmicas , Biodegradação Ambiental , Substâncias Húmicas/análise , Oxirredução
9.
Artigo em Inglês | MEDLINE | ID: mdl-32545640

RESUMO

The utilization of extracellular electron transfer by microorganism is highly engaging for remediation of toxic pollutants under "energy-starved" conditions. Humin, an organo-mineral complex of soil, has been instrumental as an external electron mediator for suitable electron donors in the remediative works of reductive dehalogenation, denitrification, and so forth. Here, we report, for the first time, that humin assists microbial acetogenesis as the extracellular electron donor using the electron acceptor CO 2 . Humin was obtained from Kamajima paddy soil, Japan. The anaerobic acetogenic consortium in mineral medium containing CO 2 / HCO 3 - as the inorganic carbon source used suspended humin as the energy source under mesophilic dark conditions. Retardation of acetogenesis under the CO 2 -deficient conditions demonstrated that humin did not function as the organic carbon source but as electron donor in the CO 2 -reducing acetogenesis. The consortium with humin also achieved anaerobic dechlorination with limited methanogenic activity. Total electron-donating capacity of humin was estimated at about 87 µeeq/g-humin. The metagenomic sequencing of 16S rRNA genes showed the predominance of Firmicutes (71.8 ± 2.5%) in the consortium, and Lachnospiraceae and Ruminococcaceae were considered as the CO 2 -reducing acetogens in the consortium. Thus, microbial fixation of CO 2 using humin introduces new insight to the holistic approach for sustainable treatment of contaminants in environment.


Assuntos
Elétrons , Biodegradação Ambiental , Substâncias Húmicas , Japão , Oxirredução , RNA Ribossômico 16S
10.
Artigo em Inglês | MEDLINE | ID: mdl-31405258

RESUMO

Anoxic aquifers suffer from energy limitations due to the unavailability of organic substrates, as dictated by hydrogen (H2) for various electron-accepting processes. This deficiency often results in the accumulation of persistent organic pollutants, where bioremediation using organic compounds often leads to secondary contamination. This study involves the reductive dechlorination of pentachlorophenol (PCP) by dechlorinators that do not use H2 directly, but rather through a reduced state of humin-a solid-phase humic substance-as the extracellular electron donor, which requires an organic donor such as formate, lactate, etc. This shortcoming was addressed by the development of an anaerobic mixed culture that was capable of reductively dechlorinating PCP using humin under autotrophic conditions induced by homoacetogenesis. Here, H2 was used for carbon-dioxide fixation to acetate; the acetate produced was used for the reduction of humin; and consequently used for dechlorination through reduced humin. The 16SrRNA gene sequencing analysis showed Dehalobacter and Dehalobacterium as the possible dechlorinators, while Clostridium and Oxobacter were identified as the homoacetogens. Thus, this work contributes to the development of an anaerobic consortium that balanced H2 dependency, where efficiency of humin reduction extends the applicability of anaerobic microbial remediation in aquifers through autotrophy, syntrophy, and reductive dechlorination.


Assuntos
Clostridium/metabolismo , Água Subterrânea/microbiologia , Pentaclorofenol/metabolismo , Peptococcaceae/metabolismo , Poluentes Químicos da Água/metabolismo , Anaerobiose , Processos Autotróficos , Biodegradação Ambiental , Elétrons , Halogenação , Substâncias Húmicas , Microbiota , Oxirredução
11.
Bioelectrochemistry ; 129: 100-105, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31153124

RESUMO

Electrochemically active bacteria (EAB) are capable of electrochemical interactions with electrodes via extracellular electron transfer (EET) pathways and serve as essential components in bioelectrochemical systems. Previous studies have suggested that EAB, such as Shewanella oneidensis MR-1, use cyclic AMP (cAMP) receptor proteins to coordinately regulate the expression of catabolic and EET-related genes, prompting us to hypothesize that the intracellular cAMP concentration is an important factor determining the electrochemical activities of EAB. The present study constructed an MR-1 mutant, cyaC-OE, that overexpressed cyaC, a gene encoding a membrane-bound class III adenylate cyclase, and examined its electrochemical and transcriptomic characteristics. We show that the intracellular cAMP concentration in cyaC-OE is more than five times that in wild-type MR-1, and that cya-OE generates approximately two-fold higher current in BES than the wild-type strain. In addition, the expression of genes involved in EET and anaerobic carbon catabolism is up-regulated in cya-OE compared to that in the wild-type strain. These results suggest that increasing the intracellular cAMP level is a promising approach for constructing EAB with high catabolic and electrochemical activities.


Assuntos
Adenilil Ciclases/genética , Proteínas de Bactérias/genética , Fontes de Energia Bioelétrica/microbiologia , Shewanella/genética , Regulação para Cima , Adenilil Ciclases/metabolismo , Proteínas de Bactérias/metabolismo , AMP Cíclico/metabolismo , Eletricidade , Genes Bacterianos , Shewanella/fisiologia
12.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30504209

RESUMO

Shewanella oneidensis MR-1 is a facultative anaerobe that respires using a variety of electron acceptors. Although this organism is incapable of fermentative growth in the absence of electron acceptors, its genome encodes LdhA (a putative fermentative NADH-dependent d-lactate dehydrogenase [d-LDH]) and Dld (a respiratory quinone-dependent d-LDH). However, the physiological roles of LdhA in MR-1 are unclear. Here, we examined the activity, transcriptional regulation, and traits of deletion mutants to gain insight into the roles of LdhA in the anaerobic growth of MR-1. Analyses of d-LDH activity in MR-1 and the ldhA deletion mutant confirmed that LdhA functions as an NADH-dependent d-LDH that catalyzes the reduction of pyruvate to d-lactate. In vivo and in vitro assays revealed that ldhA expression was positively regulated by the cyclic-AMP receptor protein, a global transcription factor that regulates anaerobic respiratory pathways in MR-1, suggesting that LdhA functions in coordination with anaerobic respiration. Notably, we found that a deletion mutant of all four NADH dehydrogenases (NDHs) in MR-1 (ΔNDH mutant) retained the ability to grow on N-acetylglucosamine under fumarate-respiring conditions, while an additional deletion of ldhA or dld deprived the ΔNDH mutant of this growth ability. These results indicate that LdhA-Dld serves as a bypass of NDH in electron transfer from NADH to quinones. Our findings suggest that the LdhA-Dld system manages intracellular redox balance by utilizing d-lactate as a temporal electron sink under electron acceptor-limited conditions.IMPORTANCE NADH-dependent LDHs are conserved among diverse organisms and contribute to NAD+ regeneration in lactic acid fermentation. However, this type of LDH is also present in nonfermentative bacteria, including members of the genus Shewanella, while their physiological roles in these bacteria remain unknown. Here, we show that LdhA (an NADH-dependent d-LDH) works in concert with Dld (a quinone-dependent d-LDH) to transfer electrons from NADH to quinones during sugar catabolism in S. oneidensis MR-1. Our results indicate that d-lactate acts as an intracellular electron mediator to transfer electrons from NADH to membrane quinones. In addition, d-lactate serves as a temporal electron sink when respiratory electron acceptors are not available. Our study suggests novel physiological roles for d-LDHs in providing nonfermentative bacteria with catabolic flexibility under electron acceptor-limited conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Lactato Desidrogenases/metabolismo , Shewanella/enzimologia , Açúcares/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Proteína Receptora de AMP Cíclico , Transporte de Elétrons , Fermentação , Regulação Bacteriana da Expressão Gênica , Lactato Desidrogenases/genética , Ácido Láctico/metabolismo , Oxirredução , Ácido Pirúvico/metabolismo , Shewanella/genética , Shewanella/crescimento & desenvolvimento , Shewanella/metabolismo
13.
Nat Commun ; 9(1): 1083, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540717

RESUMO

Electrochemically active bacteria (EAB) receive considerable attention for their utility in bioelectrochemical processes. Although electrode potentials are known to affect the metabolic activity of EAB, it is unclear whether EAB are able to sense and respond to electrode potentials. Here, we show that, in the presence of a high-potential electrode, a model EAB Shewanella oneidensis MR-1 can utilize NADH-dependent catabolic pathways and a background formate-dependent pathway to achieve high growth yield. We also show that an Arc regulatory system is involved in sensing electrode potentials and regulating the expression of catabolic genes, including those for NADH dehydrogenase. We suggest that these findings may facilitate the use of EAB in biotechnological processes and offer the molecular bases for their ecological strategies in natural habitats.


Assuntos
Shewanella/enzimologia , Shewanella/metabolismo , Eletroquímica , Eletrodos , NADH Desidrogenase/metabolismo
14.
Biosci Biotechnol Biochem ; 82(1): 166-172, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29235426

RESUMO

Cyclic 3',5'-adenosine monophosphate (cAMP) phosphodiesterase (CPD) is an enzyme that catalyzes the hydrolysis of cAMP, a signaling molecule affecting diverse cellular and metabolic processes in bacteria. Some CPDs are also known to function in cAMP-independent manners, while their physiological roles remain largely unknown. Here, we investigated physiological roles of CPD in Shewanella oneidensis MR-1, a model environmental bacterium, and report that CPD is involved in amino-acid metabolism. We found that a CPD-deficient mutant of MR-1 (ΔcpdA) showed decreased expression of genes for the synthesis of methionine, S-adenosylmethionine, and histidine and required these three compounds to grow in minimal media. Interestingly, deletion of adenylate cyclases in ΔcpdA did not restore the ability to grow in minimal media, indicating that the amino acid requirements were not due to the accumulation of cAMP. These results suggest that CPD is involved in the regulation of amino acid metabolism in MR-1 in a cAMP-independent manner.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Aminoácidos , Proteínas de Bactérias/metabolismo , AMP Cíclico , Shewanella/química , Aminoácidos/metabolismo , AMP Cíclico/metabolismo , Deleção de Sequência , Shewanella/metabolismo
15.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28625998

RESUMO

An electrochemical flow cell equipped with a graphite working electrode (WE) at the bottom was inoculated with Shewanella oneidensis MR-1 expressing an anaerobic fluorescent protein, and biofilm formation on the WE was observed over time during current generation at WE potentials of +0.4 and 0 V (versus standard hydrogen electrodes), under electrolyte-flow conditions. Electrochemical analyses suggested the presence of unique electron-transfer mechanisms in the +0.4-V biofilm. Microscopic analyses revealed that, in contrast to aerobic biofilms, current-generating biofilm (at +0.4 V) was thin and flat (∼10 µm in thickness), and cells were evenly and densely distributed in the biofilm. In contrast, cells were unevenly distributed in biofilm formed at 0 V. In situ fluorescence staining and biofilm recovery experiments showed that the amounts of extracellular polysaccharides (EPSs) in the +0.4-V biofilm were much smaller than those in the aerobic and 0-V biofilms, suggesting that Shewanella cells suppress the production of EPSs at +0.4 V under flow conditions. We suggest that Shewanella cells perceive electrode potentials and modulate the structure and composition of biofilms to efficiently transfer electrons to electrodes.IMPORTANCE A promising application of microbial fuel cells (MFCs) is to save energy in wastewater treatment. Since current is generated in these MFCs by biofilm microbes under horizontal flows of wastewater, it is important to understand the mechanisms for biofilm formation and current generation under water-flow conditions. Although massive work has been done to analyze the molecular mechanisms for current generation by model exoelectrogenic bacteria, such as Shewanella oneidensis, limited information is available regarding the formation of current-generating biofilms over time under water-flow conditions. The present study developed electrochemical flow cells and used them to examine the electrochemical and structural features of current-generating biofilms under water-flow conditions. We show unique features of mature biofilms actively generating current, creating opportunities to search for as-yet-undiscovered current-generating mechanisms in Shewanella biofilms. Furthermore, information provided in the present study is useful for researchers attempting to develop anode architectures suitable for wastewater treatment MFCs.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes , Eletrodos/microbiologia , Grafite/química , Shewanella/fisiologia , Eletricidade , Transporte de Elétrons , Polissacarídeos/metabolismo , Shewanella/química
16.
Front Microbiol ; 8: 869, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28559887

RESUMO

Shewanella oneidensis MR-1 is a heterotrophic facultative anaerobe that respires using various organic and inorganic compounds. This organism has served as a model to study bacterial metabolic and regulatory systems that facilitate their survival in redox-stratified environments. The expression of many anaerobic respiratory genes in MR-1, including those for the reduction of fumarate, dimethyl sulfoxide, and metal oxides, is regulated by cyclic AMP receptor protein (CRP). However, relatively little is known about how this organism regulates the expression of catabolic enzymes catalyzing the oxidation of organic compounds, including lactate. Here, we investigated transcriptional mechanisms for the lldP (SO_1522) and dld (SO_1521) genes, which encode putative lactate permease and D-lactate dehydrogenase, respectively, and demonstrate that CRP regulates their expression in MR-1. We found that a crp-deletion mutant of MR-1 (Δcrp) showed impaired growth on D-lactate. Complementary expression of dld in Δcrp restored the ability to grow on D-lactate, indicating that the deficient growth of Δcrp on D-lactate is attributable to decreased expression of dld. In vivo transcription and in vitro electrophoretic mobility shift assays reveal that CRP positively regulates the expression of the lldP and dld genes by directly binding to an upstream region of lldP. Taken together, these results indicate that CRP is a global transcriptional regulator that coordinately regulates the expression of catabolic and respiratory pathways in MR-1, including D-lactate dehydrogenase and anaerobic terminal reductases.

17.
PLoS One ; 10(9): e0138813, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26394222

RESUMO

In bioelectrochemical systems, the electrode potential is an important parameter affecting the electron flow between electrodes and microbes and microbial metabolic activities. Here, we investigated the metabolic characteristics of a glucose-utilizing strain of engineered Shewanella oneidensis under electrode-respiring conditions in electrochemical reactors for gaining insight into how metabolic pathways in electrochemically active bacteria are affected by the electrode potential. When an electrochemical reactor was operated with its working electrode poised at +0.4 V (vs. an Ag/AgCl reference electrode), the engineered S. oneidensis strain, carrying a plasmid encoding a sugar permease and glucose kinase of Escherichia coli, generated current by oxidizing glucose to acetate and produced D-lactate as an intermediate metabolite. However, D-lactate accumulation was not observed when the engineered strain was grown with a working electrode poised at 0 V. We also found that transcription of genes involved in pyruvate and D-lactate metabolisms was upregulated at a high electrode potential compared with their transcription at a low electrode potential. These results suggest that the carbon catabolic pathway of S. oneidensis can be modified by controlling the potential of a working electrode in an electrochemical bioreactor.


Assuntos
Reatores Biológicos/microbiologia , Metabolismo Energético , Glucose/metabolismo , Shewanella/metabolismo , Acetatos/metabolismo , Técnicas Bacteriológicas/instrumentação , Técnicas Bacteriológicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Lactatos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Redes e Vias Metabólicas/genética , Oxirredução , Fosfotransferases/genética , Fosfotransferases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Shewanella/genética
18.
Front Microbiol ; 6: 609, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26136738

RESUMO

Shewanella oneidensis MR-1 is a facultative anaerobe that respires using a variety of inorganic and organic compounds. MR-1 is also capable of utilizing extracellular solid materials, including anodes in microbial fuel cells (MFCs), as electron acceptors, thereby enabling electricity generation. As MFCs have the potential to generate electricity from biomass waste and wastewater, MR-1 has been extensively studied to identify the molecular systems that are involved in electricity generation in MFCs. These studies have demonstrated the importance of extracellular electron-transfer (EET) pathways that electrically connect the quinone pool in the cytoplasmic membrane to extracellular electron acceptors. Electricity generation is also dependent on intracellular catabolic pathways that oxidize electron donors, such as lactate, and regulatory systems that control the expression of genes encoding the components of catabolic and electron-transfer pathways. In addition, recent findings suggest that cell-surface polymers, e.g., exopolysaccharides, and secreted chemicals, which function as electron shuttles, are also involved in electricity generation. Despite these advances in our knowledge on the EET processes in MR-1, further efforts are necessary to fully understand the underlying intra- and extracellular molecular systems for electricity generation in MFCs. We suggest that investigating how MR-1 coordinates these systems to efficiently transfer electrons to electrodes and conserve electrochemical energy for cell proliferation is important for establishing the biological basis for MFCs.

19.
BMC Microbiol ; 15: 68, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25886963

RESUMO

BACKGROUND: Shewanella oneidensis MR-1 is capable of reducing extracellular electron acceptors, such as metals and electrodes, through the Mtr respiratory pathway, which consists of the outer membrane cytochromes OmcA and MtrC and associated proteins MtrA and MtrB. These proteins are encoded in the mtr gene cluster (omcA-mtrCAB) in the MR-1 chromosome. RESULTS: Here, we investigated the transcriptional mechanisms for the mtr genes and demonstrated that omcA and mtrC are transcribed from two upstream promoters, P omcA and P mtrC, respectively. In vivo transcription and in vitro electrophoretic mobility shift assays revealed that a cAMP receptor protein (CRP) positively regulates the expression of the mtr genes by binding to the upstream regions of P omcA and P mtrC. However, the expression of omcA and mtrC was differentially regulated in response to culture conditions; specifically, the expression from P mtrC was higher under aerobic conditions than that under anaerobic conditions with fumarate as an electron acceptor, whereas expression from P omcA exhibited the opposite trend. Deletion of the region upstream of the CRP-binding site of P omcA resulted in a significant increase in promoter activity under aerobic conditions, demonstrating that the deleted region is involved in the negative regulation of P omcA. CONCLUSIONS: Taken together, the present results indicate that transcription of the mtr genes is regulated by multiple promoters and regulatory systems, including the CRP/cAMP-dependent regulatory system and yet-unidentified negative regulators.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteína Receptora de AMP Cíclico/genética , Grupo dos Citocromos c/genética , Regulação Bacteriana da Expressão Gênica , Shewanella/genética , Transcrição Gênica , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aerobiose/genética , Anaerobiose/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cromossomos Bacterianos/química , Cromossomos Bacterianos/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Grupo dos Citocromos c/metabolismo , Transporte de Elétrons , Fumaratos/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Shewanella/metabolismo
20.
PLoS One ; 8(11): e77443, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223712

RESUMO

In sediment-type microbial fuel cells (sMFCs) operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Geobacter/genética , Metagenoma , Eletrodos/microbiologia , Genes Bacterianos , Oryza/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...